
(3 Proof

Br/ng trust into your DijeCfS

Blockchain Security | Smart Contract Audits | KYC
Development | Marketing

MADE IN GERMANY

Alt Signals

Audit

Security Assessment
10. February, 2023

For

\ ALTSIGNALS

Yy SolidProof io A @solidproof io

https://twitter.com/SolidProof_io
https://t.me/solidproof_io

Disclaimer
Description

Project Engagement
Logo

Contract Link
Methodology

Used Code from other Frameworks/Smart Contracts (direct imports)

Tested Contract Files
Source Lines

Risk Level

Capabilities

Inheritance Graph

CallGraph

Scope of Work/Verify Claims
Modifiers and public functions
Source Units in Scope
Critical issues

High issues

Medium issues

Low issues

Informational issues

Audit Comments

SWC Attacks

oo N o o o O W

10
11
12
13
14
24
25
26
26
26
26
26
27
28

Disclaimer

SolidProof.io reports are not, nor should be considered, an “endorsement”
or “disapproval” of any particular project or team. These reports are not,
nor should be considered, an indication of the economics or value of any
“product” or “asset” created by any team. SolidProof.io do not cover
testing or auditing the integration with external contract or services (such
as Unicrypt, Uniswap, PancakeSwap etc'..)

SolidProof.io Audits do not provide any warranty or guarantee
regarding the absolute bug- free nature of the technology analyzed,
nor do they provide any indication of the technology proprietors.
SolidProof Audits should not be used in any way to make decisions
around investment or involvement with any particular project. These
reports in no way provide investment advice, nor should be leveraged
as investment advice of any sort.

SolidProof.io Reports represent an extensive auditing process intending to
help our customers increase the quality of their code while reducing the
high level of risk presented by cryptographic tokens and blockchain
technology. Blockchain technology and cryptographic assets present a
high level of ongoing risk. SolidProof’s position is that each company and
individual are responsible for their own due diligence and continuous
security. SolidProof in no way claims any guarantee of security or

functionality of the technology we agree to analyze.

Version Date Description

1.0 4. February 2023 - Layout project
- Automated- /Manual-Security Testing
- Summary

http://SolidProof.io

Network
Ethereum

Website

https://Mwww.altsignals.io/

Telegram
https://t.me/altsignals

Twitter
https://twitter.com/AltSignalseng

YouTube
https://Mwww.youtube.com/channel/UCd39ssL SMBjXs40C7ai541w

TikTok

https://mwww.tiktok.com/@altsignals?lang=en

Instagram
https://Mww.instagram.com/altsignals.io/?hl=en

https://www.altsignals.io/
https://t.me/altsignals
https://twitter.com/AltSignalseng
https://www.youtube.com/channel/UCd39ssLSMBjXs4oC7ai541w
https://www.tiktok.com/@altsignals?lang=en
https://www.instagram.com/altsignals.io/?hl=en

Description

AltSignals has been running without stop since 2017, unlike many other
services which often pop up and disappear after a few months, Usually
leaving you high and dry after you've parted with your cash.

With so many scams in this business its important to deal with a
company who is trusted and has a strong track record of results, which
can be found in our results section.

Our Binance Futures and Forex signals are consistently profitable month
on month, with accuracy in 80%+ range usually.

Project Engagement

During the Date of 4th of February 2023, Alt Signals Team engaged
Solidproof.io to audit smart contracts that they created. The engagement
was technical in nature and focused on identifying security flaws in the
design and implementation of the contracts. They provided Solidproof.io
with access to their code repository and whitepaper.

Logo

4 ALTSIGNALS

Contract Link
v1.0

https:/github.com/blck-media-tech/alt-contracts/tree/main/contracts
Commit; fdf3d7fea7574dcd16305191f7df88e54dc95ac4

https://github.com/blck-media-tech/alt-contracts/tree/main/contracts

Vulnerability & Risk Level

Risk represents the probability that a certain source-threat will exploit
vulnerability, and the impact of that event on the organization or system.
Risk Level is computed based on CVSS version 3.0.

Medium

4-69

A vulnerability that
can disrupt the
contract functioning
in @ number of
scenarios, or creates a
risk that the contract
may be broken.

A vulnerability that
affects the desired
outcome when using
a contract, or provides
the opportunity to
use a contract in an
unintended way.

A vulnerability that
could affect the
desired outcome of
executing the
contract in a specific
scenario.

A vulnerability that
does not have a
significant impact on
possible scenarios for
the use of the
contract and is
probably subjective.

A vulnerability that
have informational
character but is not
effecting any of the
code.

Immediate action to
reduce risk level.

Implementation of
corrective actions as
soon aspossible.

Implementation of
corrective actionsin a
certain period.

Implementation of
certain corrective
actions or accepting
the risk.

An observation that
does not determine a
level of risk

Auditing Strategy and Techniques
Applied

Throughout the review process, care was taken to evaluate the repository
for security-related issues, code quality, and adherence to specification
and best practices. To do so, reviewed line-by-line by our team of expert
pentesters and smart contract developers, documenting any issues as
there were discovered.

Methodology

The auditing process follows a routine series of steps:
1. Code review that includes the following:

i) Review of the specifications, sources, and instructions provided to SolidProof
to make sure we understand the size, scope, and functionality of the smart
contract.

ii) Manual review of code, which is the process of reading source code line-by-
line in an attempt to identify potential vulnerabilities.

iii) Comparison to specification, which is the process of checking whether the
code does what the specifications, sources, and instructions provided to
SolidProof describe.

2. Testing and automated analysis that includes the following:

i) Test coverage analysis, which is the process of determining whether the test
cases are actually covering the code and how much code is exercised when
we run those test cases.

ii) Symbolic execution, which is analysing a program to determine what inputs
causes each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency,
effectiveness, clarify, maintainability, security, and control based on the established
industry and academic practices, recommendations, and research.

4. Specific, itemized, actionable recommendations to help you take steps to secure
your smart contracts.

Used Code from other Frameworks/Smart
Contracts (direct imports)

Imported packages:

Dependency / Import Path Count
@openzeppelin/contracts/access/Ownable.sol 2
@openzeppelin/contracts/security/Pausable.sol 1
@openzeppelin/contracts/security/ReentrancyGuard.sol 1
@openzeppelin/contracts/token/ERC20/ERC20.sol 1
@openzeppelin/contracts/token/ERC20/IERC20.sol 1

—

@openzeppelin/contracts/token/ERC20/extensions/ERC20Capped.sol

@openzeppelin/contracts/token/ERC20/utils/SafeERC20.sol 1

Tested Contract Files

This audit covered the following files listed below with a SHA-1 Hash.

A file with a different Hash has been modified, intentionally or otherwise,
after the security review. A different Hash could be (but not necessarily)
an indication of a changed condition or potential vulnerability that was

not within the scope of this review.

v1.0

File Name

SHA-1 Hash

contracts/interfaces/IPresale.sol

b675b607bcacbe8bc9cc038c7del19
70eab966cab

contracts/interfaces/
IChainlinkPriceFeed.sol

eba8c00d573270d0c414854a02al1a
b10d6180708

contracts/ASIPresale.sol

2edf069a7025568595bc9db2b8f3e1
b8736f91a0

contracts/ASIToken.sol

2126¢59cea79f38b415670f5b6423a
dba87dc35b

Metrics

Source Lines
v1.0

I source comment [single block [mixed
P empty I todo blockEmpty

\
e

Risk Level
v1.0

1 overall average

perceivedComplexity
¥ 4
compilerVersion 6 size
4
compilerFeatures numLogicContracts
inlineDocumentation numFiles

interfaceRisk

10

Capabilities

Components

_Contracts ¥ Libraries QInterfaces @ Abstract

2 0 2 0

Exposed Functions

This section lists functions that are explicitly declared public or payable. Please note that getter methods for public stateVars are not included.

{ZPublic & Payable

19 1
External Internal Private Pure View
15 17 0 0 9

StateVariables
Total 3Public

13 12

Capabilities

Solidity Versions observed / Experimental Features @& Can Receive Funds B Uses Assembly @ Has Destroyable Contracts

= Transfers ETH <~ Low-Level Calls 2% DelegateCall Uses Hash Functions “ ECRecover © New/Create/Create2

¢» TryCatch % Unchecked

11

Inheritance Graph
v1.0

ASIPresale
ReentrancyGuard

IChainlinkPriceFeed
ERC20Capped

12

CallGraph
v1.0

13

Scope of Work/Verify Claims

The above token Team provided us with the files that needs to be tested
(Github, Bscscan, Etherscan, files, etc.). The scope of the audit is the main
contract (usual the same name as team appended with .sol).

We will verify the following claims:

1.

® N0 UGN

Is contract an upgradeable

Correct implementation of Token standard
Deployer cannot mint any new tokens
Deployer cannot burn or lock user funds
Deployer cannot pause the contract

Deployer cannot set fees

Deployer cannot blacklist/antisnipe addresses
Overall checkup (Smart Contract Security)

14

Is contract an upgradeable

Name

Is contract an upgradeable?

15

Correct implementation of Token standard

ERC20

Function

Description

TotalSupply

Provides information about the total
token supply

BalanceOf

Provides account balance of the
owner's account

Transfer

Executes transfers of a specified
number of tokens to a specified
address

TransferFrom

Executes transfers of a specified
number of tokens from a specified
address

Approve

Allow a spender to withdraw a set
number of tokens from a specified
account

Allowance

Returns a set number of tokens
from a spender to the owner

Exist Tested Verified

16

Write functions of contract
v1.0
pause
unpause
addToBlacklist
removeFromBlacklist
resqueERC20
configureSaleTimeframe

configureClaim

-

buyWithEth 8

buyWithUSDT

claim

Deployer cannot mint any new tokens

Name Exist Tested Status

Deployer can mint

Max / Total Supply N/A

Comments:

v1.0

Owner can mint new tokens until the maximum cap is reached, and
that will be decided at the time of Deployment.

18

Deployer cannot burn or lock user funds

Exist Tested Status

Name

Deployer can lock

Deployer cannot burn

Comments:
v1.0
Owner can lock user funds by

blacklisting addresses
Updating the claim start time after the tokens are sold to any

arbitrary time, even setting it into the past is also possible which
may lead to instant claims. No investor will be able to claim
tokens because claim start time will be too long.

19

Deployer cannot pause the contract

Name Exist Tested Status

Deployer can pause

Comments:

v1.0

Owner can pause the presale contract directly and also by updating
the sale start and end time even after the sale has been started.

20

Deployer cannot set fees

Name Exist Tested Status

Deployer cannot set fees over 25%

Deployer cannot set fees to nearly 100% or to 100%

21

Deployer can blacklist/antisnipe addresses

Name Exist Tested Status

Deployer can blacklist/antisnipe addresses

Comments:

v1.0

Owner is able to blacklist addresses from the presale

22

Overall checkup (Smart Contract Security)

Tested Verified

Legend

Attribute Symbol

Verified / Checked

Partly Verified

Unverified / Not checked

Not available

23

Modifiers and public functions
v1.0

pause

® onlyOwner
unpause

® onlyOwner
addToBlacklist

® onlyOwner
removeFromBlacklist

® onlyOwner
resqueERC20

® onlyOwner
configureSaleTimeframe

® onlyOwner
configureClaim

® onlyOwner
buyWithEth &

® notBlacklisted

® verifyPurchase
® whenNotPaused

® nonReentrant
buyWithUSDT

® notBlacklisted

® verifyPurchase

® whenNotPaused

® nonReentrant
claim

® whenNotPaused

Ownership Privileges:
Withdraw tokens from the presale contract including the sale token,
which is not recommended because this way owner can have both the
ETH and USDT, alongside the sale token

Please check if an OnlyOwner or similar restrictive modifier has been
forgotten.

24

Source Units in Scope

v1.0
File Logic Contracts Interfaces Lines nLines nSLOC Comment Lines Complex. Score
contracts/interfaces/IPresale.sol 1 30 30 25 1 1
contracts/interfaces/IChainlinkPriceFeed.sol 1 15 5 3] 1 3
contracts/ASIPresale.sol 1 381 381 205 135 156
contracts/ASIToken.sol 1 24 24 18 2 18
Totals 2 2 450 440 251 139 178
Legend
Attribute Description
Lines total lines of the source unit
nLines normalised lines of the source unit (e.g. normalises functions
spanning multiple lines)
ASLOC normalised source lines of code (only source-code lines; no

Comment Lines

Complexity Score

comments, no blank lines)
lines containing single or block comments

a custom complexity score derived from code statements that
are known to introduce code complexity (branches, loops, calls,
external interfaces, ...)

25

Audit Results

Critical issues

No critical issues

High issues

No high issues

Medium issues

Issue File Type

#1 ASI|Pres
ale.sol

Owner can Withdraw
funds

Low issues

Issue File Type

#1 All A floating pragma is set

H2 ASI|Pres
ale.sol

Missing Zero Address
Validation (missing-
zero-check)

#3 ASI|Pres
ale.sol

Missing Events
Arithmetic

Informational issues

Issue File Type

Line

190

Line

167,178

All

Line

Description

The owner can withdraw all
the funds from the presale
contract because there is no
protection against passing
the sale token address in the
‘resqueERC20’ function.

We recommend to put a
check in place to prevent this
from happening.

Description

The current pragma Solidity
directive is ,“70.8.17".

Check that the address is not
zero

Emit an event for critical
parameter changes

Description

26

documentation

missing

#1 ASIPres Misspelling 190 Change following words:
ale.sol
- ‘resque’
Make sure to change it
everywhere else as well.
#2 Main NatSpec If you started to comment

your code, also comment all
other functions, variables etc.

Audit Comments

We recommend you to use the special form of commments (NatSpec
Format, Follow link for more information https:/docs.soliditylang.org/en/

latest/natspec-format.html) for your contracts to provide rich
documentation for functions, return variables and more. This helps
investors to make clear what that variables, functions etc. do.

10. February 2023:

There is still an owner (Owner still has not renounced ownership)
Read whole report and modifiers section for more information

27

https://docs.soliditylang.org/en/latest/natspec-format.html
https://docs.soliditylang.org/en/latest/natspec-format.html

SWC Attacks

ID

0
=

3

B &

‘m
=

I

‘m
=

s

n
=

O

HRE K]

‘m
=

6L

n
=

3

BRE R

Title

Unencrypted
Private Data
On-Chain

Code With No
Effects

Message call
with
hardcoded
gas amount

Hash
Collisions With
Multiple
Variable
Length
Arguments

Unexpected
Ether balance

Presence of
unused
variables

Right-To-Left-
Override
control
character
(U+202E)

Typographical
Error

DoS With
Block Gas
Limit

Relationships

CWE-767: Access to Critical
Private Variable via Public
Method

CWE-1164: Irrelevant Code

CWE-655: Improper
Initialization

CWE-294: Authentication
Bypass by Capture-replay

CWE-667: Improper Locking

CWE-1164: Irrelevant Code

CWE-451: User Interface (Ul)
Misrepresentation of Critical

Information

CWE-480: Use of Incorrect
Operator

CWE-400: Uncontrolled
Resource Consumption

Status

28

https://swcregistry.io/docs/SWC-136
https://cwe.mitre.org/data/definitions/767.html
https://swcregistry.io/docs/SWC-135
https://cwe.mitre.org/data/definitions/1164.html
https://swcregistry.io/docs/SWC-134
https://cwe.mitre.org/data/definitions/665.html
https://swcregistry.io/docs/SWC-133
https://cwe.mitre.org/data/definitions/294.html
https://swcregistry.io/docs/SWC-132
https://cwe.mitre.org/data/definitions/667.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-131
https://cwe.mitre.org/data/definitions/1164.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-130
http://cwe.mitre.org/data/definitions/451.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-129
https://cwe.mitre.org/data/definitions/480.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-128
https://cwe.mitre.org/data/definitions/400.html

‘m
=

N

=

s

‘m
=

R [2

0
=

O

RRE R

‘m
=

STe

‘m
=

oL

0 |ooQ‘m m‘(p‘m
‘E ‘:5 LS

N ‘(‘)
1

Arbitrary
Jump with
Function Type
Variable

Incorrect
Inheritance
Order

Write to
Arbitrary
Storage
Location

Requirement
Violation

Lack of Proper
Signature
Verification

Missing
Protection
against
Signature
Replay Attacks

Weak Sources
of
Randomness
from Chain
Attributes

Shadowing
State Variables

Incorrect
Constructor
Name

Signature
Malleability

CWE-695: Use of Low-Level
Functionality

CWE-696: Incorrect Behavior
Order

CWE-123: Write-what-where
Condition

CWE-573: Improper Following
of Specification by Caller

CWE-345: Insufficient
Verification of Data
Authenticity

CWE-347: Improper
Verification of Cryptographic

Signature

CWE-330: Use of Insufficiently
Random Values

CWE-710: Improper Adherence

to Coding Standards

CWE-665: Improper
Initialization

CWE-347: Improper
Verification of Cryptographic

Signature

29

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-127
https://cwe.mitre.org/data/definitions/695.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-125
https://cwe.mitre.org/data/definitions/696.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-124
https://cwe.mitre.org/data/definitions/123.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-123
https://cwe.mitre.org/data/definitions/573.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-122
https://cwe.mitre.org/data/definitions/345.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-121
https://cwe.mitre.org/data/definitions/347.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-120
https://cwe.mitre.org/data/definitions/330.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-119
http://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-118
http://cwe.mitre.org/data/definitions/665.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-117
https://cwe.mitre.org/data/definitions/347.html

[¥a] [ON'e) ‘U)
‘5 ‘: s

[€p ‘O
1

‘m
=

IS ‘Q

[¥a] N O ‘U)
‘5 ‘: s

N ‘O
1

=

I—‘O
a
—

wn o 10 |\
2 PLE

8 [2

=

& 2

‘m
=

RE

‘m
=

82

Timestamp
Dependence

Authorization
through
tx.origin

Transaction
Order
Dependence

DoS with
Failed Call

Delegatecall
to Untrusted
Callee

Use of
Deprecated
Solidity
Functions

Assert
Violation

Uninitialized
Storage
Pointer

State Variable
Default
Visibility

Reentrancy

Unprotected
SELFDESTRUC
T Instruction

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-362: Concurrent
Execution using Shared
Resource with Improper
Synchronization ('Race

Condition')

CWE-703: Improper Check or
Handling of Exceptional
Conditions

CWE-829: Inclusion of
Functionality from Untrusted
Control Sphere

CWE-477: Use of Obsolete
Function

CWE-670: Always-Incorrect
Control Flow Implementation

CWE-824: Access of
Uninitialized Pointer

CWE-710: Improper Adherence
to Coding Standards

CWE-841: Improper
Enforcement of Behavioral
Workflow

CWE-284. Improper Access
Control

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-116
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-115
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-114
https://cwe.mitre.org/data/definitions/362.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-113
https://cwe.mitre.org/data/definitions/703.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-112
https://cwe.mitre.org/data/definitions/829.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-111
https://cwe.mitre.org/data/definitions/477.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-110
https://cwe.mitre.org/data/definitions/670.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-109
https://cwe.mitre.org/data/definitions/824.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-108
https://cwe.mitre.org/data/definitions/710.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-107
https://cwe.mitre.org/data/definitions/841.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-106
https://cwe.mitre.org/data/definitions/284.html

=

3

n
=

O

geE K|

‘m
=

B

=

El

‘m
=

|O |(')
O |4

Unprotected
Ether
Withdrawal

Unchecked
Call Return
Value

Floating
Pragma

Outdated
Compiler
Version

Integer
Overflow and
Underflow

Function
Default
Visibility

CWE-284. Improper Access
Control

CWE-252: Unchecked Return
Value

CWE-664: Improper Control of
a Resource Through its
Lifetime

CWE-937: Using Components
with Known Vulnerabilities

CWE-682: Incorrect
Calculation

CWE-710: Improper Adherence

to Coding Standards

31

https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-105
https://cwe.mitre.org/data/definitions/284.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-104
https://cwe.mitre.org/data/definitions/252.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-103
https://cwe.mitre.org/data/definitions/664.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-102
http://cwe.mitre.org/data/definitions/937.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-101
https://cwe.mitre.org/data/definitions/682.html
https://smartcontractsecurity.github.io/SWC-registry/docs/SWC-100
https://cwe.mitre.org/data/definitions/710.html

Yy SolidProof io <A @solidproof io

Blockchain Security | Smart Contract Audits | KYC
Development | Marketing

MADE IN GERMANY

https://t.me/solidproof_io
https://twitter.com/SolidProof_io

	Disclaimer
	Description
	Project Engagement
	Logo
	Contract Link
	Methodology
	Used Code from other Frameworks/Smart Contracts (direct imports)
	Tested Contract Files
	Source Lines
	Risk Level
	Capabilities
	Inheritance Graph
	CallGraph
	Scope of Work/Verify Claims
	Modifiers and public functions
	Source Units in Scope
	Critical issues
	High issues
	Medium issues
	Low issues
	Informational issues
	Audit Comments
	SWC Attacks

